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INTRODUCTION

Although analysis of variance is the most popular statistical tool for

researchers in the behavioral sciences, it is only recently that the casual

user has recognized that there is no single correct way to perform such an

analysis. For a given factrial design with equal cell frequencies, older

textbooks uniformly described exactly the same procedure. Rarely was the

topic of unbalanced data discussed.

Within the past decade, there has developed an increased awareness that

analysis of variance can be viewed as a special case of regression analysis.

This more general approach has made it clear that, for unbalanced designs,

there is no unique way to perform analysis of variance. For example, Overall

and Klett (1972) and Kerlinger and Pedhazur (1973) point out several different

ways to calculate a main effect sum of sql:ares. However, they do not provide

adequate advice on how to choose among the various sums of squares.

A substantial literature is available to help in the selection of the

most appropriate method of analysis. Unfortunately, much of this literature

is very esoteric and is thus ineffective as an aid to the non-statistician.

It is the purpose of this paper to integrate the literature into a comprehen-

sive comparison of alternative methods of performing a two-way, fixed effects

analysis of variance.

THE MODEL

The two-way (AxB) analysis of variance is hased on the model

(1)Yijk 1 ijk
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yhere i=1,..., a ; j=1..., b ; and k=1,..., . Here, the >0nii nij

denotes the cell frequencies.

Using the notation of Searle (1971), we can denote as R(u, a,p, Y)

the reduction in the sum of squares due to the model in (1). Similarly,

ye could define a reduced model

Yijk a ai °,j
e
ijk (2)

and R(u, al p) would then denote the reduction in the sum of squares

due to this new model. The difference between these reductions is denoted

R( Y I a, 0) = R(a,, a, 0, ) - R(u, a, p) (3)

and expresses the reduction due to fitting y over and above u, al and p.

This would commonly be considered as the sum of squares due to interaction.

In an analogous fashionlwe could calculate R(ala, 0, Y), R0706 (3)

or R(Celu). Any, or all of these could, under the correct conditions,

interpreted as a sum of squares for the "A" mai -ffect. How is one to

choose? What are the "correct conditions" under which all of these may be

interpreted as a SS(A)?

The answers to these questions lie e.eeply imbedded in the interpreta-

tions one makes of the parameters in the full model (1). It is a common

misconceptionthst be interpreted as a grand mean,
j

A effect, B effect and interaction, respectively. Under certain restric-

tions _e model, these interpretations are correct. However, such res-

trictions need not be imposed to derive the analysis.

THE UNRESTRICTED /X1DEL

The analysis of variance based on the model (1) with no restrictions

4
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17posed is fully developed by Searle (1970. Since the norr l equations

for the unrestricted model have no unique least squares solution, Searle

makes use of the concept of a generalized inverse.

Using matrix notation, the model can be re-expressed as

= X Q + e, (10

where y is an Nxl vector of the y. 0 contains the parameters

tr, a., P., Y. }, e is an Nxl vector c: the e and X is a design
j

matrix consisting entirely of zeros and ones. Normal equaLions can now be

expressed as

(X'X) = X' y , (5)
A

where Q represents some least squares solution. Since X'X is singular,

we resort to a generalized inverse, G, which satisfies

so that

(CX) G (x'x) = x'x )

A
= G X' y .

Searle makes elegant use of the properties of generalized inverses to

show that the reduction due to the model is invariant to the choice of G.

However, choosing a specific G is equivalent to placing constraints on the

A
solution 9 . It is critical at this point to recognize that the choice of

constraints on the solution is a matter of 7onvenience and in no way forces

similar restrictions on the parameters of the model.

Using generalize0 inverses to'solve normal equations for the full and

a variety of reduced models, it is simple to derive such expressions as

R
o
(YJIL, a, (1),

o
(xl u, 5,y), R

o
B) and ri

o
(a k). The subscript

on R ( ) will indicate a reduction based on an unstricted model. Compu-



tational formulas and hypotheses tested by these sums of squares are given

in Table L.

Insert Table 1 about here

Observe one strange occurrence in Table 1:

Ro(aV, y 0

This startling outcome results from the fact that the design matric for

the full model and for the reduced model

Y
+ + Y.. e.. (8)ij

u
k j ij ijk

span exactly the same vector space. In other words, since the full model has

far more parameters than can be used, the elimination of the parameters a.

does not reduce the effectiveness of the model. In fact the elimination of

u, a. and would not change the reduction in the sum of squares due to the

model. Thus, the reduction due to any effect, over and above the 7 , is
ij

uninteresting in the unrestricted model.

Again referring to Table 1, note that the hypotheses being tested are

complex and, most likely, not very interpretable. Furthermore, the hypoth-

eses corresponding to 110(a)a) and R 0041,0) depend upon the possibly arbi-

trary configuration of cell frequencies. These findings provide little direc-

tion in the choice of a sum of squares for the A-effect. Is it possible that

some form of restrictions imposed on the model might simplify these hypotheses?

Will imp.)sition of these restriction change the reduction sums of squares? 'What

type of restrictions should be chosen?

THE RESTRICTED MODEL

To answer these questions, the model under restrictions will be investi-

gated. Restrictions can be imposed in a very general way: for an arbi-



trary set of numbers

_5._

{v.; i=1,...,a} and w . ; j=1, ,b } where

Lv. = Zw. = 1, we can impose restrictions of the form
ii j

E v.a. = z w.p. = Ev.y. = zw.y. = 0 (9)
J

Denoting as R ( ) the 1-eduction in the sum of squares due to a model

restricted uncaer (9)0 it is possible to show, using results from Scheffe

(1959) that Rr( Ylu,a,P) = 130( ylu,a,p) and Rr(alu,D) = Ro(alu,t3).

Although Scheffe does not consider the situation, it is easil; shown that

R
r
(alu) = R

o
(al u). However, Scheff does show that, in general,

R
r
(al u,ply) does not equal zero as does R

o
(al u,P, Y); furthermore,

R
r
(a)u,p, y) depends upon the choice of the weights v., w. . For this

reason, two commonly used sets of restrictions will be explored. The first

set of restrictions, defined by the weights given in set S10 are

This implies that

S = =
1 ti

1

'j

a. = 5. =Y. = Y. = 0
. . 1. .3

(10)

where the dot notation sjgnifies summing over the subscript replaced by the

dot. A second restriction is defined by the weights

S
2

= {1.r. = n. /N 0 w. = n ./N } Y (12)

which in turn imposes the restrictions

zn. a. = zn .p, = Zn. Y., = En . Y.. = 0. (13)1. 1 j j. 1. 13 j 13

It should be clear that the manner in which the parameters of the model

relate to the cell means, u.j ., depends upon +he choice of a restriction.
i

When no restrictions are imposed, no unique functional relationship exists

7
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between the model's parameters and the cell means. It is informative to

express at least one set of parameters, say the ai, in terms of the cell

means to see the implications of the two restrictions. Under S
1'

we find

that

(1) 1
a. 1.14 - =-LELL. = - 7 ;

ab j ij 1.

Undcr ,thea.are defined
1

(2) 1 1
n - Z E n. n

1 N .j ij
1

SituationsobviouslyexistwherethecP)areallzero,buttheP)are
1

not. For this reason, caution must be exercised when testing a hypothesis

of the form

H : a. = 0 far all i .

o 1

Scheffe proves that, for any set of weights,

Rr(a 1 11,13,v ) = Z w. -J1 - u w.)-1 (E wiiii)2, (14)
3. 3. . 3.i 1 i

[z ,..,/n. ] -1where W. = ard A. = Z w. y. . Substituting S in1 j 31 ij 1 j j ij. 1

(14) and denoting the reductiog as R1( ), simple algebra yields

(Y:-. Y., )2
X"'"N

LjL 3./n

J ij

2yj ij

This sum of squares is identical to that calculated by the weighted squares

of meana method (see Searle (1971, pp. 369-372) or Winer (1971, pp. 417-418)).

Applying frequency weighted restrictions as given in S2, we obtain



:run (11;) that

P.2 (Cr B, r)

-7-

)2.3 iv.

z(n 2 in

j

2
.

(alrin 2/n :))

iji.j

(16)
Ely142/n.j)-1

This sum of squares is not in common use. The formulas for R
r
(y)a,a,S)

117.(a !), 111.(42,D) and Rr(a 1:213,7) and the hypotheses they test are given,

for both S and S
2

, in Table 2. Parameters are superscripted to reinforce1

their differences.

Insert Table 2 about here

Several things should be noted. First, the definitions of the para-

meters are not the same under S2 as under Sl. Thus, even when a hypoth-

esis under S appears to be identical to that under S
2'

the two may not be1

equivalent (i.e., imply each other). Scheff (1959) shows that the inter-

action hypotheses are equivalent under the two sets. Assuming zero inter-

actions, the hypothesis for R1(la implies that for R2(ala). Similarly,

the two hypotheses for Ri(ah,a) are cOnditionally equivalent. However,

the hypotheses for R
r
(a112,1E5Y) are not equivalent and this is reinforced by

thedependencecontheweightsv.and w. .

It should be noted that R
r
(alq) tests a hypothesis which remains de-

pendent upon cell frequencies and the hypothesis for Rr(alu,a) simplifies

only when expressed conditionally. In summary, imposing restrictions does

simplify the hypotheses in Table 1, out the appropriate choice of a main effect

SS remains unclear.

9
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CELL NEAN MODEL

denotes a cell mean, the model in (1) can bc expressed

E( ) + a. + D. + Y.. =Yijk j 3.j 13
(17 )

In the absence of restrictions, u, a., p. and Y.. have no unique de-
i

nendence upon the u.j .. Imposing restrictions of'the form (9) allows one
i

to express these parameters as functions of the cell means. However, some

statisticians prefer to eliminate the problem of imposing restrictions by

writing the model entirely in terms of cell means. This form of the model

actually predates the overparameterized version.

The cell mean model is discussed briefly by Searle (1971) and in great

depth by Timm and Carlson (1973). In a short and well written article by

Kutner (1974), the hypotheses and corresponding SS of primary interest are

developed. Table 3 presents some of Kutner's null hypotheses, along with

their equivalent reductions.

Insert Table 3 about here

Hypothesis H
1
is equivalent to the hypothesis tested by R

o
(Ylula,S).

Hypothesis H14 is simply a re-writing of that tested by R
o
(alu). The

reductiDn R
o
(alv,5) can be vieWed as testing'the conditional hypothesis

H :a.are all equal Y.. are all equal,

and this is equivalent to H3 above. The hypothesis tested by 111(a)q,S,Y)

is easily shown to be equivalent to H2. Searle (1971, p.315, eq. 122) also

derives a statistic, equal in value to 111(41,p,r), but not readily expressed

a reduction. In the unrestricted model, the statistic tests the hypothesis

1 0



alJ equal.
1 1.

PROPORTIONAL AND BALANCED DATA

It should be clear that R(Ylu,a,0) is our only rational choice for the

interaction SS. Of the possible choices of the SS(A), R(Ccia) appears to be

clearly undesirable. The other two reductions, R(alu,0) and R(ala,f3,Y)

each have drawbacks; R(alit,3) tests a very complicated hypothesis in the

overparameterized, =1-restricted model. In the restricted or in the cell

mean model, it tests a conditional hypothesis. The reduction R(giv,O,Y)

tests nothing in the unrestricted model and tests different hypotheses and

assumes different values in the restricted models, depending upon the

restriction. How do these different reductions operate for data which are

proportional?

Cell frequencies are said to be proportional when

n. n .

n.. = 1. .0

In this situation, we find that

Ro(alu) ....R1(41) R2(alu)

Ro(a)g,S) = R1(alu,0 = R2(a)u,p)

R2(a1u,P,Y) / 131(alq,P,Y)

These reductions and their hypotheses are given in Table 4.

Insert Table 4 about here

(18)

(19)

Notice that R(a).1) and R(alu,f3) are equal, regardless of which restrictions

are imposed or even when no restrictions are imposed. The reduction

R2(a).1,;3,7) equals this common value, but R1(a)u,B,Y) does not.

11
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The proportionality of the cell frequencies does not substantially

simplify the hypotheses tested by Ro(*) and Ro(alu,). The same is true

for R
1
(al.!) and R.(a11,13). However, under restrictions S

2
, the reductions

R2(04.!,) and E2(a1A,B,y) all test the simple hypothesis that the

a. are all zero. The reduction ya alsoteststhatthea.are

allzerobutthea.have a different meaning, and thus the hypothesis must

be viewed as distinct from that for R2(alu,p,y).

The common value of the reductions given in (19) will equal the SS(A)

calculated from the special formulas for proportional data. Such formulas

are given in standard experimental design books such as Kirk (1963: p. 201).

Ifalleellfrequenciesareequal(n..=n), we have a balanced design.

In that event, we find that

R0(41) = R1(a)u) = R2(41)

RoOalu,P) = 1110alq,0 = R2(alu,p) =

yalg,p,Y)

The reduction R
o
(alu,D,Y) remains zero, but all others are equal and iden-

tical to the SS(A) given in any elementary statistics book. The restrictions

degenerate to the same set and all R
1
( ) and R

2
( ) test the same hypoth-

es3s, a. = 0. Th.' Ro(*) and Ro(alu,p) test the hypothesis that the

a.
1

+ Y... are equal, where Z Y.. . This information is sum-
Yi . b 13

marized in Table 5.

Insert Table 5 about here

THE REDUCTION CHOSEN

Elementary statistics texts such as Hays (1973), McNemar (1962), Glass

14,



and 3tanley (1970), Edwards (1968) and Guilford and Fruchter (1973) consider

only the balanced case with restrictions and thus have no choice to make.

Experimental design texts such as Niner(1962) and Kirk (1968) consider un-

blanced and proportional designs and recommend, in our notation, R(riu,a,o)

and R(ak,p). In his second edition, Winer (1971) also suggests the weighted

squares of means solution, R1(a)1,D,Y). Texts stressing a linear regression

approach (e.g., Kelinger and Pedhazur (1973) and Overall and Klett (1972))

suggest the choice be made from among R1(alu), R1(a)u,) and yalq,P,y).

Canned -computer programs approach the unbalanced design in a wide

variety of ways. Francis (1973) has surveyed a variety of such packages and

reports that some, such as CAROLINA (Psychometric Laboratory, University of

North Carolina) and OSIRIS (University of Michigan, 1970) calculate

and then R
1
(11,1,a), or vice-versa, depending on the order of input of the

factors. A program fray) North Carolina State (Barr and Goodnight, 1971)

calculate. R
1
(c4u) and R

1
(0)u); the interaction is calculated by sub-

traction, yielding a negative sum of squares for the example cited.

Two programs from the "Biomedical Computer Programs" (Uxon, 1970) pro-

vide the user ith among the most accurate and general and least expensive

means of performing the analysis. BMDX64 (BMD1010 will automatically cal-

culate R1(a)u,5,Y), R10111,a,Y) and R101/1, a,p). If the user wishes,

any other reduction can be obtained by means of extra hypotheses cards.

BMDO5V is somewhat less automatic and somewhat less general. It requires

that the user input a design matrix and the specific reductions required. In

light of the wide diversity of possible ways to analyze unbalanced data, it

is this author's belief that the less automated approach of EMDO5V is to
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be preferred, in that it forces the user to be aware of what procedure Le

being used.

A word of caution is in order at this point. A variety of computer

programs are incommon use which claim to handle unbalanced data. Many of these

provide little (or no) documentation as to the method of analysis. Some, such

as AVAP23(Veldman, 1967) in fact perform an unweighted means analysis of

variance. This is not an exact least squares solution except in the balanced

case. It is always desirable, prior to relying on any computer program, to

submit a test problem to it. Overall and Klett (1972) provide one such set

of test data (see the footnote in Kutner (1974) for a transcribing error)

along with a large variety of different reductions.

RECOMMENDATIONS

Only one definitive recommendation will be offered: use li(71a,a,B)

as the interaction SS. This is no major breakthrough, since most

use this presently. In attempting to choose between redt Lions for the "A"

main effect, this author generally prefers 21(04,0). This preference is not

based upon desirable properties of R(CtialS), but rather on undesirable

properties of its competitors. The reduction R(ala) tests hypotheses which

are dependent upon cell frequencies for all but the trivial aase of equal

frequencies and the case of proportional frequencies with weighted restric-

tions. The reduction R(alalo,v) is widely used, but has the disadvantage

of being dependent upon the form of the restrictions placed on the model. One

could argue that, if we always choose unweighted restrictions of the form of

(11), this problem would not exiSt. However, we then are forced to use an

"unusual" (by widely used textbooks) statistic for the main effects when the

cell sizes are proportional. The preferred reduction, RA11,02 always

14
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tests hypotheses which are free of cell frequencies (at least when there are

no etpty cells). Its value is not affected by restrictons and its hypothesis

is always reasonable, even with no restrictions, It -Is true that it 4-ests a

hypothesis which is conditional upon "additivity." This, however, is no real

disadvantace, since interest in a "main effect" typically present only in

the absence of interaction. Given even the slightest hint of unequal Y..,

most re.seechers will go immediately to simple effect

In summary, R (cluA) is the preferred choice of this author. That

choice was made on the basis of subjective evaluation.- It is incumbent

upon each individual to make his or her own decisions.
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TABLE 2

Reductions and Hypotheses for the Restricted Y.odelc

Reduction Formula Hypothesis+,

7 9.-)
Ri(711.1,cx,f3) Same as R0(7114a, all

(3) 1.3 = 0

R2(yiu,a,5) Same as R0( ylu,a,a) all Y (. 2. )

= i
7 2

(fT )° 517j-1.)(Z

R
2
(0)u P

'
7)

(1)
En

n.71
1

1

j 13

)
2

2 -1
En n.
j .j 1j

same as

same as

(E iYii
all

(2)
= 0

n .n..

E(En2.n.-.1) -1
j .3 13

R0(41,5)

R0(41,5)

same as R0(cria)

same as R0041)

alloac1)=Olall
(1)

= 0
1

Yij

all a(2) = Olall YIV= 0
1

alga.(1) fil(13(1) Y(j:)))
1 jn. j

1. equal
lj

all(a2)+ n1jf,(2) 7(2)
))lj+1 jn. j

1. equal

y(1) =ij 13

n. Li. n .

- ii. - i. . ;

(2) ,
Y = 0.. - -- 0 u EE 1' 'J

1. .3 13 13 N ij j N ij ij /12 "ij

a(1) (2) ni.
n. n

a =
N lj N2
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TABLE h

ReduCtions and Hypotheses for Proportional Cell Frequencies

Reduction Formula Hypothesis

Ro(YIP,c0)

R (YIP a"1

R (YIP a"2

Ro(ctIP,,Y)

R1(aIP,,Y)

R
2
(alP Y)

= 2 2
fni.Ji..

4. 2

same as R
o
(y111,aA)

same as R (ylp,aA)
0

0

does not simplify

En. y. - N y

same as R (aIP
'

Y)2

same as Ii2(alliA,y)

same as B2(aluA,y)

same as
2 (aI11A,Y)

same as R
2 (a '

IP Y)

same as R
2
(a

' '
IP y)

all 1ij =

all y(1)= 0
ij

all y(2)= 0
ii

none

(1)
all a. = 0

(2)
all a. = 0

1

all a. = alall y
ij

= Y

11)
all a. = 0411 yij = y..

. (2) 1 (2)
all a. = 0 lall Yj. = yi

all (ai. +Enij + y.))
(Jr,.

"1.

all (acl) + Eni1(0.c1) + ycl)))
Jni. (.1

ij

(0)equat
all 67'
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TABLE 5

Reductions and Hypotheses for Equal Cell Frequencies

Reduction Formula Hypothesis

R-fylp 2 2a a)cr nEEy. 2 - bnE 37 2
ij 1J-

-anE T2 N1 2
4.

all y.
j
= 7

i

R1(YI1J,a,a) same as Ro(YIP,a,a) all yij= 0

R2(yl1J,a,a) same as R0(Y111,a,a) all yij= 0

Ro(alp,a,y) 0 none

R1(alp,a,Y) bnE -371
2 Ny..2

all a . = 0
1

R2(alp,a,y) same as R1(alp,a,y) all a . = 0

Ro(alp,a) same as R1(alp,a,y)
. Yij

Ri(alp,a) same as R1(al1.i,a,y) all a. = Olall Y . = 0li

R2(alp,a) same as R1(alp,a,y) all a. = Olall y . = 0

R (alp)
,c)

R
1 (alp)

R2(alp)

same as R1(alp,a,y)

same as Ri(alp,a,y)

same as R1(alp,a,y)

all ai eqUal

all a = 0

all al


